Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.12.20.572494

ABSTRACT

The most common cause of death due to COVID-19 remains respiratory failure. Yet, our understanding of the precise cellular and molecular changes underlying lung alveolar damage is limited. Here, we integrate single cell transcriptomic data of COVID-19 donor lungs with spatial transcriptomic data stratifying histopathological stages of diffuse alveolar damage (DAD). We identify changes in cellular composition across progressive DAD, including waves of molecularly distinct macrophages and depleted epithelial and endothelial populations throughout different types of tissue damage. Predicted markers of pathological states identify immunoregulatory signatures, including IFN-alpha and metallothionein signatures in early DAD, and fibrosis-related collagens in organised DAD. Furthermore, we predict a fibrinolytic shutdown via endothelial upregulation of SERPINE1/PAI-1. Cell-cell interaction analysis revealed macrophage-derived SPP1/osteopontin signalling as a key regulator during early DAD. These results provide the first comprehensive, spatially resolved atlas of DAD stages, highlighting the cellular mechanisms underlying pro-inflammatory and pro-fibrotic pathways across alveolar damage progression.


Subject(s)
Fibrosis , Adenocarcinoma, Bronchiolo-Alveolar , COVID-19 , Respiratory Insufficiency
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.06.01.23290819

ABSTRACT

Evaluation of host-response blood transcriptional signatures of viral infection have so far failed to test whether these biomarkers reflect different biological processes that may be leveraged for distinct translational applications. We addressed this question in the SARS-CoV-2 human challenge model. We found differential time profiles for interferon (IFN) stimulated blood transcriptional responses represented by measurement of single genes. MX1 transcripts correlated with a rapid and transient wave of type 1 IFN stimulated genes (ISG) across all cell types, which may precede PCR detection of replicative infection. Another ISG, IFI27, showed a delayed but sustained response restricted to myeloid peripheral blood mononuclear cells, attributable to gene and cell-specific epigenetic regulation. These findings were reproducible in diverse respiratory virus challenges, and in natural infection with SARS-CoV-2 or unselected respiratory viruses. The MX1 response achieved superior diagnostic accuracy in early infection, correlation with viral load and identification of virus culture positivity, with potential to stratify patients for time sensitive antiviral treatment. IFI27 achieved superior diagnostic accuracy across the time course of symptomatic infection. Compared to blood, measurement of these responses in nasal mucosal samples was less sensitive and did not discriminate between early and late phases of infection.


Subject(s)
Virus Diseases , Respiratory Tract Infections
3.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.04.13.23288227

ABSTRACT

The COVID-19 pandemic is an ongoing global health threat, yet our understanding of the cellular disease dynamics remains limited. In our unique COVID-19 human challenge study we used single cell genomics of nasopharyngeal swabs and blood to temporally resolve abortive, transient and sustained infections in 16 seronegative individuals challenged with preAlpha-SARS-CoV-2. Our analyses revealed rapid changes in cell type proportions and dozens of highly dynamic cellular response states in epithelial and immune cells associated with specific timepoints or infection status. We observed that the interferon response in blood precedes the nasopharynx, and that nasopharyngeal immune infiltration occurred early in transient but later in sustained infection, and thus correlated with preventing sustained infection. Ciliated cells showed an acute response phase, upregulated MHC class II while infected, and were most permissive for viral replication, whilst nasal T cells and macrophages were infected non-productively. We resolve 54 T cell states, including acutely activated T cells that clonally expanded while carrying convergent SARS-CoV-2 motifs. Our novel computational pipeline (Cell2TCR) identifies activated antigen-responding clonotype groups and motifs in any dataset. Together, we show that our detailed time series data (covid19cellatlas.org) can serve as a 'Rosetta stone' for the epithelial and immune cell responses, and reveals early dynamic responses associated with protection from infection.


Subject(s)
COVID-19 , Infections
4.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.16.524211

ABSTRACT

Children infected with SARS-CoV-2 rarely progress to respiratory failure, but the risk of mortality in infected people over 85 years of age remains high, despite vaccination and improving treatment options. Here, we take a comprehensive, multidisciplinary approach to investigate differences in the cellular landscape and function of paediatric (<11y), adult (30-50y) and elderly (>70y) nasal epithelial cells experimentally infected with SARS-CoV-2. Our data reveal that nasal epithelial cell subtypes show different tropism to SARS-CoV-2, correlating with age, ACE2 and TMPRSS2 expression. Ciliated cells are a viral replication centre across all age groups, but a distinct goblet inflammatory subtype emerges in infected paediatric cultures, identifiable by high expression of interferon stimulated genes and truncated viral genomes. In contrast, infected elderly cultures show a proportional increase in ITGB6hi progenitors, which facilitate viral spread and are associated with dysfunctional epithelial repair pathways. A video explaining this work can be found here - https://youtu.be/uExP4bx6D_A .


Subject(s)
Corneal Dystrophy, Juvenile Epithelial of Meesmann , Infections , Respiratory Insufficiency
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.13.22281024

ABSTRACT

Age is a major risk factor for hospitalization and death after SARS-CoV-2 infection, even in vaccinees. Suboptimal responses to a primary vaccination course have been reported in the elderly, but there is little information regarding the impact of age on responses to booster third doses. Here we show that individuals 70 or older who received a primary two dose schedule with AZD1222 and booster third dose with mRNA vaccine achieved significantly lower neutralizing antibody responses against SARS-CoV-2 spike pseudotyped virus compared to those younger than 70. One month after the booster neither the concentration of serum binding anti spike IgG antibody, nor the frequency of spike-specific B cells showed differences by age grouping. However, the impaired neutralization potency and breadth post-third dose in the elderly was associated with enrichment of circulating atypical spike-specific B cells expressing CD11c and FCRL5. Single cell RNA sequencing confirmed an expansion of TBX21-, ITGAX-expressing B cells in the elderly that enriched for B cell activation/receptor signalling pathway genes. Importantly we also observed impaired T cell responses to SARS-CoV-2 spike peptides in the elderly post-booster, both in terms of IFNgamma and IL2 secretion, as well as a decrease in T cell receptor signalling pathway genes. This expansion of atypical B cells and impaired T cell responses may contribute to the generation of less affinity-matured antibodies, with lower neutralizing capacity post-third dose in the elderly. Altogether, our data reveal the extent and potential mechanistic underpinning of the impaired vaccine responses present in the elderly after a booster dose, contributing to their increased susceptibility to COVID-19 infection.


Subject(s)
Severe Acute Respiratory Syndrome , Death , COVID-19
6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.14.475727

ABSTRACT

Obesity is common and associated with more severe COVID-19, proposed to be in part related to an adipokine-driven pro-inflammatory state. Here we analysed single cell transcriptomes from bronchiolar lavage in three adult cohorts, comparing obese (Ob, body mass index (BMI) >30m2) and non-obese (N-Ob, BMI <30m2). Surprisingly, we found that Ob subjects had attenuated lung immune/inflammatory responses in SARS-CoV-2 infection, with decreased expression of interferon (IFN), IFN{gamma} and tumour necrosis factor (TNF) alpha response gene signatures in almost all lung epithelial and immune cell subsets, and lower expression of IFNG and TNF in specific lung immune cells. Analysis of peripheral blood immune cells in an independent adult cohort showed a similar, but less marked, reduction in type I IFN and IFN{gamma} response genes, as well as decreased serum IFN in Ob patients with SARS-CoV-2. Nasal immune cells from Ob children with COVID-19 also showed reduced enrichment of IFN and IFN{gamma} response genes. Altogether, these findings show blunted tissue immune responses in Ob COVID-19 patients, with clinical implications.


Subject(s)
Necrosis , Obesity , COVID-19
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.01.457774

ABSTRACT

Common genetic variants modulate the cellular response to viruses and are implicated in a range of immune pathologies, including infectious and autoimmune diseases. The transcriptional antiviral response is known to vary between infected cells from a single individual, yet how genetic variants across individuals modulate the antiviral response (and its cell-to-cell variability) is not well understood. Here, we triggered the antiviral response in human fibroblasts from 68 healthy donors, and profiled tens of thousands of cells using single-cell RNA-seq. We developed GASPACHO (GAuSsian Processes for Association mapping leveraging Cell HeterOgeneity), the first statistical approach designed to identify dynamic eQTLs across a transcriptional trajectory of cell populations, without aggregating single-cell data into pseudo-bulk. This allows us to uncover the underlying architecture and variability of antiviral response across responding cells, and to identify more than two thousands eQTLs modulating the dynamic changes during this response. Many of these eQTLs colocalise with risk loci identified in GWAS of infectious and autoimmune diseases. As a case study, we focus on a COVID-19 susceptibility locus, colocalised with the antiviral OAS1 splicing QTL. We validated it in blood cells from a patient cohort and in the infected nasal cells of a patient with the risk allele, demonstrating the utility of GASPACHO to fine-map and functionally characterise a genetic locus. In summary, our novel analytical approach provides a new framework for delineation of the genetic variants that shape a wide spectrum of transcriptional responses at single-cell resolution.


Subject(s)
COVID-19 , Autoimmune Diseases
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.09.21253012

ABSTRACT

While a substantial proportion of adults infected with SARS-CoV-2 progress to develop severe disease, children rarely manifest respiratory complications. Therefore, understanding differences in the local and systemic response to SARS-CoV-2 infection between children and adults may provide important clues about the pathogenesis of SARS-CoV-2 infection. To address this, we first generated a healthy reference multi-omics single cell data set from children (n=30) in whom we have profiled triple matched samples: nasal and tracheal brushings and PBMCs, where we track the developmental changes for 42 airway and 31 blood cell populations from infancy, through childhood to adolescence. This has revealed the presence of naive B and T lymphocytes in neonates and infants with a unique gene expression signature bearing hallmarks of innate immunity. We then contrast the healthy reference with equivalent data from severe paediatric and adult COVID-19 patients (total n=27), from the same three types of samples: upper and lower airways and blood. We found striking differences: children with COVID-19 as opposed to adults had a higher proportion of innate lymphoid and non-clonally expanded naive T cells in peripheral blood, and a limited interferon-response signature. In the airway epithelium, we found the highest viral load in goblet and ciliated cells and describe a novel inflammatory epithelial cell population. These cells represent a transitional regenerative state between secretory and ciliated cells; they were found in healthy children and were enriched in pediatric and adult COVID-19 patients. Epithelial cells display an antiviral and neutrophil-recruiting gene signature that is weaker in severe paediatric versus adult COVID-19. Our matched blood and airway samples allowed us to study the spatial dynamics of infection. Lastly, we provide a user-friendly interface for this data as a highly granular reference for the study of immune responses in airways and blood in children.


Subject(s)
COVID-19
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.13.21249725

ABSTRACT

The COVID-19 pandemic, caused by SARS coronavirus 2 (SARS-CoV-2), has resulted in excess morbidity and mortality as well as economic decline. To characterise the systemic host immune response to SARS-CoV-2, we performed single-cell RNA-sequencing coupled with analysis of cell surface proteins, providing molecular profiling of over 800,000 peripheral blood mononuclear cells from a cohort of 130 patients with COVID-19. Our cohort, from three UK centres, spans the spectrum of clinical presentations and disease severities ranging from asymptomatic to critical. Three control groups were included: healthy volunteers, patients suffering from a non-COVID-19 severe respiratory illness and healthy individuals administered with intravenous lipopolysaccharide to model an acute inflammatory response. Full single cell transcriptomes coupled with quantification of 188 cell surface proteins, and T and B lymphocyte antigen receptor repertoires have provided several insights into COVID-19: 1. a new non-classical monocyte state that sequesters platelets and replenishes the alveolar macrophage pool; 2. platelet activation accompanied by early priming towards megakaryopoiesis in immature haematopoietic stem/progenitor cells and expansion of megakaryocyte-primed progenitors; 3. increased clonally expanded CD8+ effector:effector memory T cells, and proliferating CD4+ and CD8+ T cells in patients with more severe disease; and 4. relative increase of IgA plasmablasts in asymptomatic stages that switches to expansion of IgG plasmablasts and plasma cells, accompanied with higher incidence of BCR sharing, as disease severity increases. All data and analysis results are available for interrogation and data mining through an intuitive web portal. Together, these data detail the cellular processes present in peripheral blood during an acute immune response to COVID-19, and serve as a template for multi-omic single cell data integration across multiple centers to rapidly build powerful resources to help combat diseases such as COVID-19.


Subject(s)
COVID-19 , Respiratory Insufficiency , Adenocarcinoma, Bronchiolo-Alveolar
10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.14.426652

ABSTRACT

We found SARS-CoV-2 RNA in 6 of 71 ferrets (8.4%) and isolated the virus from one rectal swab. Natural SARS-CoV-2 infection does occur in kept ferrets, at least under circumstances of high viral circulation in the human population. However, small ferret collections are probably unable to maintain prolonged virus circulation.


Subject(s)
COVID-19
11.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.26.20219089

ABSTRACT

Despite signs of infection, the involvement of the oral cavity in COVID-19 is poorly understood. To address this, single-cell RNA sequencing datasets were integrated from human minor salivary glands and gingiva to identify 11 epithelial, 7 mesenchymal, and 15 immune cell clusters. Analysis of SARS-CoV-2 viral entry factor expression showed enrichment in epithelia including the ducts and acini of the salivary glands and the suprabasal cells of the mucosae. COVID-19 autopsy tissues confirmed in vivo SARS CoV-2 infection in the salivary glands and mucosa. Saliva from SARS-CoV-2-infected individuals harbored epithelial cells exhibiting ACE2 expression and SARS-CoV-2 RNA. Matched nasopharyngeal and saliva samples found distinct viral shedding dynamics and viral burden in saliva correlated with COVID-19 symptoms including taste loss. Upon recovery, this cohort exhibited salivary antibodies against SARS-CoV-2 proteins. Collectively, the oral cavity represents a robust site for COVID-19 infection andimplicates saliva in viral transmission.


Subject(s)
Infections , Severe Acute Respiratory Syndrome , Taste Disorders , COVID-19
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.01.127019

ABSTRACT

We present here INSIGHT (Isothermal NASBA-Sequencing based hIGH-througput Test): a two-stage COVID-19 testing strategy, using a combination of an isothermal NASBA reaction and next generation sequencing. From commercially acquired human saliva with spiked-in viral RNA as input, the first stage employs isothermal amplification of viral RNA to give a rapid result in one to two hours, using either fluorescence detection or a dipstick readout, whilst simultaneously incorporating sample-specific barcodes into the amplification product. In the first stage, fluorescent viral RNA detection can be consistently achieved at 10-100 copies per 20 {micro}l reaction. The second stage pools post-amplification barcoded products from multiple samples for scalable sequencing that could be centralised, to further improve the accuracy of the test in a massively parallel way. Our two-stage testing strategy is suitable for further development into a home-based or point-of-care assay, and is potentially scalable to population level. IMPORTANTThis protocol has not been validated on patient samples and should not be used for clinical diagnosis without further validation and certification. ***This is ongoing research to develop a testing strategy for the SARS-CoV-2 virus. The Wellcome Sanger Institute is not in a position to develop this into a commercial product, but would be open to discussions with third parties about how they could develop this further to achieve the societal benefits of this work.***


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL